Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-(3,4-Methylenedioxyphenoxy)phthalonitrile

Nazan Ocak Iskelelia* and Ayşen Ağar^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun,

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.045wR factor = 0.127 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the structure of the title compound, C₁₅H₈N₂O₃, the phthalonitrile group and the 3,4-methylenedioxyphenoxy substituent are twisted with respect to one another by 58.89 (3)°. In the crystal structure, the molecules are stacked in the a-axis direction and are connected via weak C-H···N intermolecular contacts into chains, which extend in the direction of the c axis.

Received 9 December 2004 Accepted 14 December 2004 Online 24 December 2004

Comment

Substituted phthalonitriles are generally used for the synthesis of symmetrically and unsymmetrically peripherally and nonperipherally substituted phthalocyanines and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989-1996). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread applications in catalysis, in optical recording, in photoconductive materials, in photodynamic therapy and as chemical sensors (Leznoff & Lever, 1989).

The molecule of the title compound, (I), is not planar (Fig. 1). The dihedral angle between the phthalonitrile moiety and the 3,4-methylenedioxyphenoxy group is 58.89 (3)°. The C-O and C-C bond distances in the 3,4-methylenedioxyphenoxy group are similar to values reported in the literature (Okamoto et al., 1993. The lengths of the two C≡N triple bonds [C1 = N1 = 1.140 (2) Å and C2 = N2 = 1.143 (2) Å] are consistent with those found in similar compounds (Ocak et al., 2003, 2004; Atalay et al., 2003; Erdem et al., 2004). In the crystal structure, the molecules are stacked in the a-axis direction and are connected via weak intermolecular C- $H \cdot \cdot \cdot N$ contacts into chains, which extend in the c-axis direction.

Experimental

3,4-Methylenedioxyphenol (0.96 g, 6.95 mmol) and 4-nitrophthalonitrile (1.00 g, 5.78 mmol) were dissolved in dry dimethylformamide (40 ml) and stirred under N2. Dry fine-powdered sodium carbonate (1.06 g, 10.00 mmol) was added in portions $(10 \times 1 \text{ mmol})$ every 10 min. The reaction mixture was stirred for 48 h at room temperature and afterwards poured into ice-water (200 g). The product was filtered off and washed with NaOH solution (10 w/w) and water until the filtrate was neutral. Recrystallization from ethanol gave 0.84 g (55.04%) of the product. Single crystals were obtained at room

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

temperature by slow evaporation of an ethanol solution (m.p. 408 K; elemental analysis calculated for $C_{15}H_8N_2O_3$: C 68.18, H 3.05, N 10.60%; found: C 68.16 H 3.08 N 10.64%).

Crystal data

$C_{15}H_8N_2O_3$	$D_x = 1.445 \text{ Mg m}^{-3}$
$M_r = 264.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 22 043
a = 4.0159 (3) Å	reflections
b = 23.6948 (14) Å	$\theta = 1.6 - 27.2^{\circ}$
c = 12.7652 (11) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 91.642 (7)^{\circ}$	T = 293 (2) K
$V = 1214.19 (16) \text{ Å}^3$	Prism, colourless
Z = 4	$0.65 \times 0.48 \times 0.33 \text{ mm}$

Data collection

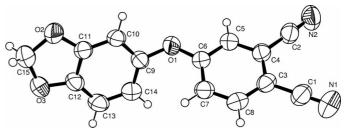
Stoe IPDS-2 diffractometer	$R_{\rm int} = 0.098$
ω scans	$\theta_{\rm max} = 26.0^{\circ}$
Absorption correction: none	$h = -4 \rightarrow 4$
13 225 measured reflections	$k = -29 \rightarrow 29$
2363 independent reflections	$l = -15 \rightarrow 15$
1887 reflections with $I > 2\sigma(I)$	

Refinement

reginement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0662P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.0684P]
$wR(F^2) = 0.127$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
2363 reflections	$\Delta \rho_{\text{max}} = 0.13 \text{ e Å}^{-3}$
182 parameters	$\Delta \rho_{\min} = -0.18 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.099 (11)

Table 1 Selected geometric parameters (Å, °).

C1-N1	1.140 (2)	C11-C12	1.375 (2)
C2-N2	1.143 (2)	C12-O3	1.3744 (19)
C6-O1	1.3637 (17)	C15-O3	1.413 (2)
C9-O1	1.4022 (17)	C15-O2	1.425 (2)
C11-O2	1.368 (2)		
C6-O1-C9	122.45 (11)		


Table 2 Hydrogen-bonding geometry (Å, °).

D-H··· A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C8-H8···N2i	0.93	2.53	3.450 (2)	168

Symmetry code: (i) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$.

H atoms were placed in calculated positions and refined isotropically using a riding model [aromatic C-H = 0.93 Å and CH₂ C-H = 0.97 Å, and $U_{\rm iso}$ (H) = 1.2 $U_{\rm eq}$ (C)].

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular

Figure 1An *ORTEPIII* drawing (Burnett & Johnson, 1996) of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

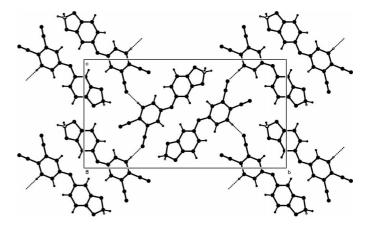


Figure 2 The crystal structure of the title compound, viewed along the a axis. The intermolecular $C-H\cdots N$ contacts are shown as dashed lines.

graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

Atalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111– o1112.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee. USA.

Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o1849–o1850.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Leznoff, C. C. & Lever, A. B. P. (1989). *Phthalocyanines: Properties and Applications*, Vol. 1. Weinheim, New York: VCH Publishers Inc.

McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.

Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). *Acta Cryst.* E**59**, o1000–o1001.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. & Erdönmez, A. (2004). *Acta Cryst.* E**60**, 033–034.

Okamoto, K., Fujii, S. & Tomita, K. (1993). Acta Cryst. C49, 1125-1127.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.